Learning Vortex Dynamics for Fluid
Inference and Prediction

ICLR 2023

Yitong Deng1,2, Hong-Xing Yu2, Jiajun Wu2, and Bo Zhu1

1 Dartmouth College; 2 Stanford University
Abstract

We propose a novel machine learning method based on differentiable vortex particles to infer and predict fluid dynamics from a single video. The key design of our system is a particle-based latent space to encapsulate the hidden, Lagrangian vortical evolution underpinning the observable, Eulerian flow phenomena. We devise a novel differentiable vortex particle system in conjunction with their learnable, vortex-to-velocity dynamics mapping to effectively capture and represent the complex flow features in a reduced space. We further design an end-to-end training pipeline to directly learn and synthesize simulators from data, that can reliably deliver future video rollouts based on limited observation. The value of our method is twofold: first, our learned simulator enables the inference of hidden physics quantities (e.g. velocity field) purely from visual observation, to be used for motion analysis; secondly, it also supports future prediction, constructing the input video's sequel along with its future dynamics evolution. We demonstrate our method's efficacy by comparing quantitatively and qualitatively with a range of existing methods on both synthetic and real-world videos, displaying improved data correspondence, visual plausibility, and physical integrity.

Paper

[PDF]
Video
Citation coming soon...